
� � Time allowed: 3 hours

The 2006 British Informatics Olympiad

Instructions

You should write a program for part (a) of each question, and produce written answers to the remaining parts.
Programs may be used to help produce the answers to these written questions but are not always necessary.

You may use a calculator and the on-line help that your programming language provides. You should have a
pen, some blank paper, and a blank floppy disk (or other storage device) on which to save your programs.
You must not use any other material such as disks, files on a computer network, books or other written
information. You may not communicate with anyone, other than the person invigilating this paper.

Mark the first page of your written answers with your name, age in years and school/college. Number all
pages in order if you use more than one sheet. All of your computer programs should display your name and
school/college when they are run, and the floppy disk you use to submit the programs should also show your
name and school/college.

For your programs to be marked, the source code must be saved, along with executables if your language
includes a compiler; this includes programs used to help answer written questions. You must clearly indicate
the name given to each program on your answer sheet(s).

Sample runs are given for parts 1(a), 2(a) and 3(a). Bold text indicates output from the program, and

normal text shows data that has been entered. The output format of your programs should follow the

‘sample run’ examples. Your programs should take less than 10 seconds of processing time for each test.

Attempt as many questions as you can. Do not worry if you are unable to finish this paper in the time
available. Marks allocated to each part of a question are shown in square brackets next to the questions.
Partial solutions (such as programs that only get some of the test cases correct within the time limit, or partly
completed written answers) may get partial marks. Questions can be answered in any order, and you may
answer the written questions without attempting the programming parts.

Hints

• If you can only see how to solve part of a problem it is worth writing a program that solves that part. We
want to give you marks and questions are evaluated using multiple tests of differing difficulty.
Remember, partial solutions may get partial marks.

• Question 2 is an implementation challenge and question 3 is a problem solving challenge.

• Most written questions can be solved by hand without solving the programming parts.

• Do not forget to indicate the name given to your programs on your answer sheet(s).

2006 British Informatics Olympiad Round One exam
�
Question 1: Anagrams

Two words are anagrams of each other if they can both be formed by rearranging the same combination of
letters. For example, GADGET and TAGGED are anagrams because they both contain one occurrence of each
of the letters A, D, E and T, and two occurrences of the letter G.

1(a) [24 marks]

Sample run
Write a program which inputs two words (each of which will contain fewer than 10
uppercase letters) and then prints Anagrams if they are anagrams of each other, or prints SUMMER

RESUME Not anagrams otherwise. Your program should then terminate.
Not anagrams

1(b) [2 marks]

Suppose that any combination of the letters A, B and C makes a valid word. How many anagrams are there of
the word ABC (including the word ABC itself)?

1(c) [4 marks]

Suppose that the only valid letters are A, B and C, and that any combination of these letters makes a valid word.
A list is created that contains words that are 5 letters long; no two words on the list are anagrams of each other.
What is the maximum number of words on list?

Page 2 of 5

2006 British Informatics Olympiad Round One exam
�
Question 2: Rules

Some computer programs try to prevent easily guessable passwords being used, by rejecting those that do not
meet some simple rule. Your task for this question is to determine if a password is accepted by a rule.

The only characters that can occur in a password are the digits 0 to 9.

A rule is made up from a sequence of symbols, each with a special meaning. Symbols can be combined to make
more complicated rules, and are written in order. Rules are described as follows:

• The symbol x means any digit is acceptable.

For example: The rule x means the password has to be a single digit. The rule xxx means the password

can be any combination of three digits.

• The symbol u means any digit that is higher than the previous digit.

• The symbol d means any digit that is lower than the previous digit.

For example: The rule xu means the password has exactly two digits, the second of which is higher than

the first; 46 would be accepted, 64 or 66 would be rejected. The rule xud means the password has

exactly three digits, the second of which is higher than the first, and the third of which is lower than the
second; 040 would be accepted.

Combinations of the x, u and d symbols (and only these symbols) can be placed inside brackets without
changing their meaning; brackets must contain some symbols. The following two symbols can only follow an x,

u, d or bracketed expression. If it is an x, u or d they change the meaning of the previous symbol. If they

follow a bracketed expression, they change the meaning of everything inside the brackets.

• The symbol ? means ignore or apply once.

For example: The rule xxx? means the password must match either the rule xx or the rule xxx. The rule

x(xx)? means the password must match either the rule x or the rule xxx.

• The symbol * means ignore, or repeat any number of times.

For example: The rule x(xu)* means the password must match one of the rules x, xxu, xxuxu,

xxuxuxu, etc...

Some combinations of these symbols are invalid, such as those that break any of the above conditions or, if for
some interpretation of their * and ? symbols, are equivalent to an invalid combination. For example, the rule u

is invalid since there is no previous digit. The rule x?u is invalid, since it means match either the rule xu or the

rule u, and the rule u is invalid. The rule (x(ud)*)* is invalid because the only valid symbols within a pair of

brackets are x, u and d.

You will not be given any invalid rules.

Page 3 of 5

2006 British Informatics Olympiad Round One exam
�

2(a) [24 marks]

Write a program to test passwords.

Your program should first read in a single line, containing the rule; this rule will have between
1 and 12 symbols (inclusive, and including any brackets). You should then read in two more
lines, each of which will contain a single password; these passwords will contain between 1
and 12 digits (inclusive).

No rule will contain more than two ? or * symbols (combined).

You should output two lines, the first line indicating whether the first password is accepted by
the rule, and the second line indicating whether the second password is accepted by the rule.
Your should output Yes if a password is accepted and No if the password is rejected.

2(b) [3 marks]

Consider the rule x(xd)?(xx)?. How many different passwords will be accepted this rule?

2(c) [3 marks]

Sample run

xu*
02468
4688

Yes
No

A zig-zag password is one where the digits alternatively rise and fall, always rising initially if the password has
more than one digit. For example, 5 and 08362 are zig-zag passwords. Find the rule that only matches zig-zag
passwords and uses the smallest number of symbols. (No justification is necessary.)

2(d) [5 marks]

Is there a rule, containing exactly 11 symbols, that can only match a single password? Justify your answer.

Page 4 of 5

2006 British Informatics Olympiad Round One exam
�
Question 3: Drats

The game of drats is played by throwing drats (which are small and dart-like) at a long board which is split into
20 adjacent segments, numbered from 1 to 20. The first drat thrown scores twice the value of the segment it
lands in, and all subsequent drats score the value of the segment they land in.

Drats that miss the board are thrown again, so every drat must score some points. Several drats are allowed to
land in the same segment.

For example, in a game with three drats, if the first drat lands in segment 4, the second in segment 10 and the
third in segment 4, the total score is 8 + 10 + 4 = 22.

Some scores can be obtained in multiple ways. For example, in a game with three drats, the score 6 can be
obtained in four ways: double-1 + 1 + 3, double-1 + 2 + 2, double-1 + 3 + 1 and double-2 + 1 + 1.

3(a) [25 marks]

Write a program to determine how many different ways a score can be obtained with a given
number of drats. Sample run

7 3 Your program should input a single line containing two integers. The first integer s (1 � s �
6 200) will indicate the required score. The second integer d (1 � d � 8) will indicate the number

of drats.

3(b) [2 marks]

What is the next lowest score, after 2, that cannot be obtained with two drats? What is the next lowest score,
after 3, that cannot be obtained with three drats?

3(c) [4 marks]

Two games of drats are played. In each game three drats are thrown. In how many different ways can the drats
be thrown if the total score in both games is equal and all six drats land in different segments?

3(d) [4 marks]

On a regulation drat board the segments do not appear in numerical order. The segments 1 to 10 count as low-
scores and the segments 11 to 20 count as high-scores. Is it possible for the segments to be arranged in such an
order that high and low scores alternate and, at the same time, odd and even segments alternate? Justify your
answer.

Total Marks: 100 End of BIO 2006 Round One paper

Page 5 of 5

