

For example, suppose it takes a bird 3s to fly $1 \rightarrow 2$, 1s to fly $1 \rightarrow 3$, 4s to fly $2 \rightarrow 4$ and 7s to fly $3 \rightarrow 4$. The fastest route from 1 to 4 is $1 \rightarrow 2 \rightarrow 4$ in a total of 7s, and the second-fastest is $1 \rightarrow 3 \rightarrow 4$ in 8s. If it was also possible to fly directly $1 \rightarrow 4$ in 7s, giving tied routes with the fastest time, the second-fastest would still be the 8s route.

SAMPLE INPUT

4			
1	2	3	
2	4	4	
1	3	1	
3	4	7	
-1 -1			-1

SAMPLE OUTPUT

Write a program that finds the second-fastest route between two waypoints. The first line of the input will be a single integer w ($2 \le w \le 256$) indicating the number of waypoints. Each successive line will consist of three integers, the first two (between 1 and w inclusive) indicating a permitted pairing of two distinct waypoints, followed by the length of time it takes to traverse that route (between 1 and 1,000,000 inclusive). No pairing of waypoints will be duplicated and pairings can be travelled in either direction. The input will be terminated by the line -1 -1.

You should output a single integer, the total amount of time required to traverse the second-fastest route between waypoints 1 and w. You will always be given test data where such a route exists.

8